产品大全 > 机械设备
一二三类压力容器,规格,价格合理!

一二三类压力容器,规格,价格合理!

产品详情

 是否提供加工 是   ?汇机械制造
 功率 不限(Kw)  容积 不限(L)
 介尺寸 不限(mm)  型号 压力容器
 材 碳钢、不锈钢等  装机容 不限(Kw)
 用途 不限

压力容器

压力容器,英文:pressure vessel,是指盛装气体或者液体,承载一定压力的密闭设备。贮运容器、反应容器、换热容器和分离容器均属压力容器。

定义

  为了与一般容器(常压容器)相区别,只有同时满足下列三个条件的容器,才称之为压力容器:   (1)工作压力(注1)大于或者等于0.1Mpa(工作压力是指压力容器在正常工作情况下,其顶部可能达到的高压力(表压力)); (不含液体静压力)   (2)内直径(非圆形截面指其大尺寸)大于等于0.15m。且容积(V)大于等于0.025立方米,工作压力与容积的乘积大于或者等于2.5MPa-L(容积,是指压力容器的几何容积);   (3)盛装介为气体、液化气体以及介高工作温度高于或者等于其标准沸点的液体.

使用简介

 

  压力容器

 

压力容器的用途十分广泛。它是在石油化学工、能源工、科研和工等国民经济的各个部门都起着重要作用的设备。压力容器一般由筒体、封头、法兰、密封元件、开和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完成不同生产工艺作用第件。压力容器由于密封、承压及介等原因,容易发生炸、燃起火而危及人员、设备和财产的安全及污染环境的事故。目前,各国均将其列为重要的监检产品,由国家指定的门机构,按照国家规定的法规和标准实施监督检查和技术检验。

编辑本段分类概述

  压力容器的分类方法很多,从使用、制造和监检的角度分类,有以下几种。

  压力容器

 

(1)按承受压力的等级分为:低压容器、中压容器、高压容器和超高压容器。   (2)按盛装介分为:非易燃、无;易燃或有;剧。   (3)按工艺过程中的作用不同分为:   ①反应容器:用于完成介的物理、化学反应的容器。   ②换热容器:用于完成介的热交换的容器。   ③分离容器:用于完成介的交换、气体净化、固、液、气分离的容器。   ④贮运容器:用于盛装液体或气体物料、贮运介或对压力起平衡缓冲作用的容器。

编辑本段我国分类

  为了更有效地实施科学管理和安全监检,我国《压力容器安全监察规程》中根据工作压力、介危害性及其在生产中的作用将压力容器分为三类。并对每个类别的压力容器在设计、制造过程,以及检验项目、内容和方式做出了不同的规定。压力容器已实施进口商品安全许可制度,未取得进口安全许可书的商品不准进口。

第三类压力容器

  具有下列情况的,为第三类压力容器:   高压容器;

  压力容器

 

中压容器(性程度为极度和高度危害介);   中压储存容器(易燃或性程度为中度危害介,且pV乘积大于等于10MPa·m3 );   中压反应容器(易燃或性程度为中度危害介,且pV乘积大于等于0.5MPa·m3);   低压容器(性程度为极度和高度危害介,且乘积大于等于0.2MPa·m3 );   高压、中压管壳式余热锅炉;   中压搪玻璃压力容器;   使用强度级别较高(指相应标准中抗拉强度规定值下限大于等于540MPa)的材料制造的压力容器;   移动式压力容器,包括铁路罐车(介为液化气体、低温液体)、罐式汽车[液化气体运输(半挂)车、低温液体运输(半挂)车、气体运输(半挂)车]和罐式集装箱(介为液化气体、低温液体)等;   球形储罐(容积大于等于50m3);低温液体储存容器(容积大于5m3)。   低温液体储存容器(容积大于5m3)

第二类压力容器

  具有下列情况的,为第二类压力容器:   中压容器;   低压容器(性程度为极度和高度危害介);   低压反应容器和低压储存容器(易燃介或性程度为中度危害介);   低压管壳式余热锅炉;   低压搪玻璃压力容器。

类压力容器

  除上述规定以外的低压容器为类压力容器。

编辑本段分类具体规定

介分组

  压力容器的介分为以下两组,包括气体、液化气体或者高工作温度高于或者等于标准沸点的液体。   (1)组介:性程度为极度危害、高度危害的化学介,易介,液化气体。   (2)第二组介:除组以外的介。

介危害性

  介危害性指压力容器在生产过程中因事故致使介与人体大接触,发生炸或者因经常泄漏引起职性慢性危害的严重程度,用介性程度和炸危害程度表示。   A1.2.1 性程度: 综合考虑急性性、高容许浓度和职性慢性危害等因素。极度危害高容许浓度小于0.1mg/m3;高度危害高容许浓度0.1~1.0 mg/m3;中度危害高容许浓度1.0~10.0 mg/m3; 轻度危害高容许浓度大于或者等于10.0 mg/m3。   A1.2.2 易介: 指气体或者液体的蒸汽、薄雾与空气混合形成的炸混合物,并且其炸下限小于10%,或者炸上限和炸下限的差值大于或者等于20%的介。   A1.2.3 具体介性危害程度和炸危险程度按GB 5044—1985 《职性接触物危害程度分级》、HG 20660—2000 《压力容器中化学介性危害和炸危险程度分类》两个标准确定。两者不一致时,以危害(危险)程度高的为准。

编辑本段分类方法

本分类

  介+第二介

 

压力容器分类应当先按照介特性,按照以下要求选择分类图,再根据设计压力p(单位MPa)和容积V(单位L),标出坐标点,确定容器类别:   (1)对于组介,压力容器的分类见图A-1。   (2)对于第二组介,压力容器的分类见图A-2。   图A-1 压力容器分类图—组介   图A-2 压力容器分类图—第二组介   多腔压力容器分类  多腔压力容器(如换热器的管程和壳程、夹套容器等)按照类别高的压力腔作为该容器的类别并且按该类别进行使用管理。但应当按照每个压力腔各自的类别分别提出设计、制造技术要求。对各压力腔进行类别划定时,设计压力取本压力腔的设计压力,容积取本压力腔的几何容积。   1. 同腔多种介容器分类   一个压力腔内有多种介时,按组别高的介分类。   2. 介含极小容器分类   当某一危害性物在介中含极小时,应当按其危害程度及其含综合考虑,由压力容器设计单位决定介组别。   特殊情况分类    (1)坐标点位于图A-1或者图A-2的分类线上时,按较高的类别划分其类别。   (2)对于GB 5044和HG 20660两个标准中没有明确规定的介,应当按化学性、危害程度及其含综合考虑,由压力容器设计单位决定介组别。(3)本规程1.4条范围内的压力容器统一划分为第Ⅰ类压力容器。

压力等级划分

  压力容器的设计压力(p)划分为低压、中压、高压和超高压四个压力等级:   (1)低压(代号L) 0.1MPa≤p<1.6MPa;   (2)中压(代号M) 1.6MPa≤p<10.0MPa;   (3)高压(代号H) 10.0MPa≤p<100.0MPa;   (4)超高压(代号U) p≥100.0MPa。

  压力容器

 

压力容器品种划分

  压力容器按在生产工艺过程中的作用原理,分为反应压力容器、换热压力容器、分离压力容器、储存压力容器。具体划分如下:   (1)反应压力容器(代号R):主要是用于完成介的物理、化学反应的压力容器,如反应器、反应釜、分解锅、化罐、分解塔、聚合釜、高压釜、超高压釜、合成塔、变换炉、蒸煮锅、蒸球、蒸压釜、煤气发生炉等。   (2)换热压力容器(代号E):主要是用于完成介的热交换的压力容器,如管壳式余热锅炉、热交换器、冷却器、冷凝器、蒸发器、加热器、消锅、染器、烘缸、蒸炒锅、预热锅、溶剂预热器、蒸锅、蒸脱机、电热蒸汽发生器、煤气发生炉水夹套等。   (3)分离压力容器(代号S):主要是用于完成介的流体压力平衡缓冲和气体净化分离的压力容器,如分离器、过滤器、集油器、缓冲器、洗涤器、吸收塔、铜洗塔、干燥塔、汽提塔、分汽缸、除氧器等。   (4)储存压力容器(代号C,其中球罐代号B):主要是用于储存、盛装气体、液体、液化气体等介的压力容器,如各种型式的储罐。   在一种压力容器中,如同时具备两个以上的工艺作用原理时,应当按工艺过程中的主要作用来划分品种。

相关规定标准

与其他技术标准,与其他管理规定的关系:  本规程是固定式压力容器的本安全性能保,也是必须满足和达到的安全要求,其他标准不得低于本规程的各项规定;   不本规定时,处理:   指“三新”试验、研究数据报告报国家检总局委托技术机构评审、处理,并将结果经总局批准后进行试制;   引用现行有效标准:十项  覆盖了各类形式、材的压力容器设计、制造,具有适用性。

  压力容器

 

(1)GB 150 -1998 钢制压力容器   (2)JB 4732 –1995 钢制压力容器—分析设计标准   (3)GB 151 -1999 管壳式换热器   (4)GB 12337- 1998 钢制球形储罐   (5)JB/T 4710 -2005 钢制塔式容器   (6)JB/T 4731 -2005 钢制卧式容器   (7)JB/T 4734 -2002 铝制焊接容器   (8)JB/T 4745 - 2002 钛制焊接容器   (9)JB/T 4755 -2006 铜制压力容器   (10)JB/T 4756 -2006 镍及镍合金制压力容器

编辑本段其他介绍

  内部或外部承受气体或液体压力,并对安全性有较高要求的密封容器。早期主要用于化学工,压力

  压力容器

 

多在10兆帕以下。合成氨和高压聚乙烯等高压生产工艺出现后,要求压力容器的压力达100兆帕以上 。随着化工和石油化工等工的发展,压力容器的工作温度范围越来越宽,容不断增大,有些还要求耐介腐蚀。20世纪60年始,核电的发展对反应堆压力容器提出了更高的安全和技术要求,从而促进了压力容器的进一步发展,广泛应用于各工部门。压力容器主要为圆柱形,也有球形或其他形状。根据结构形式,可分为多层式压力容器,绕板式压力容器、型槽绕带式压力容器、热套式压力容器、锻焊式压力容器和厚板卷焊式压力容器等。大多数压力容器由钢制成,也有的用铝、钛等有金属和玻璃钢、预应力混凝土等非金属材料制成。压力容器在使用中如发生炸,会造成灾难性事故。为了使压力容器在确保安全的前提下达到设计、结构合理、易于制造、使用可靠和造价经济等目的,各国都根据本国具体情况制定了有关压力容器的标准、规范和技术条件,对压力容器的设计、制造、检验和使用等提出具体和必须遵守的规定。

编辑本段压力容器的检验

压力容器外部检查

  亦称运行中检查,检查的主要内容有:压力容器外表面有无裂纹、变形、泄漏、局部过热等不正常现象;安全附件是否、灵敏、可靠;紧固螺栓是否完好、全部旋紧;础有无下沉、倾斜以及防腐层有无损坏等异常现象。 外部检查既是检验人员的工作,也是操作人员日常巡回检查项目。发现危及安全现象(如受压元件产生裂纹、变形、严重泄渗等)应予停车并及时报告有关人员。

压力容器内外部检验

  压力容器内外部检验这种检验必须在停车和容器内部清洗干净后才能进行。检验的主要内容除包括外部检查的全部内容外,还要检验内外表面的腐蚀磨损现象;用肉眼和放大镜对所有焊缝、封头过渡区及其他应力集中部位检查有无裂纹,必要时采用超声波或射线探伤检查焊缝内部;测壁厚。若测得壁厚小于容器小壁厚时,应重新进行强度校核,提出降压使用或修理措施;对可能引起金属材料的金相组织变化的容器,必要时应进行金相检验;高压、超高压容器的主要螺栓应利用磁粉或着进

  压力容器

 

行有无裂纹的检查等。通过内外部检验,对检验出的缺陷要分析原因并提出处理意见。修理后要进行复验。 压力容器内外部检验周期为每三年,但对强烈腐蚀性介、剧介的容器检验周期应予缩短。运行中发现有严重缺陷的容器和焊接差、材对介抗腐蚀能力不明的容器也均应缩短检验周期。

压力容器全面检验

  压力容器全面检验除了上述检验项目外,还要进行耐压试验(一般进行水压试验)。对主要焊缝进行无损探伤抽查或全部焊缝检查。但对压力很低、非易燃或无、无腐蚀性介的容器,若没有发现缺陷,取得一定使用经验后,可不作无损探伤检查。 容器的全面检验周期,一般为每六年至少进行。对盛装空气和惰性气体的制造合格容器,在取得使用经验和一两次内外检验确认无腐蚀后,全面检验周期可适当延长。

编辑本段压力容器的操作条件

压力

  压力容器的压力可以来自两个方面,一是压力是容器外产生(增大)的,二是压力是容器内产生(增大)的。   高工作压力,多指在正常操作情况下,容器顶部可能出现的高压力。   设计压力,系是指在相应设计温度下用以确定容器壳体厚度的压力,亦即标注在铭牌上的容器设计压力,压力容器的设计压力值不得低于高工作压力;当容器各部位或受压元件所承受的液柱静压力达到5%设计压力时,则应取设计压力和液柱静压力之和进行该部位或元件的设计计算;装有安全阀的压力容器,其设计压力不得低于安全阀的开启压力或破压力。容器的设计压力确定应按GB 150的相应规定。

温度

 

  压力容器

 

金属温度,系指容器受压元件沿截面厚度的平均温度。任何情况下,元件金属的表面温度不得超过钢材的允许使用温度。   设计温度,系指容器在正常操作情况下,在相应设计压力下,壳壁或元件金属可能达到的高或低温度。当壳壁或元件金属的温度低于—20℃,按低温度确定设计温度;除此之外,设计温度按高温度选取。设计温度值不得低于元件金属可能达到的高金属温度;对于0℃以下的金属温度,则设计温度不得高于元件金属可能达到的低金属温度。容器设计温度(即标注在容器铭牌上的设计介温度)是指壳体的设计温度。

  生产过程所涉及的介品种繁多,分类方法也有多种。按物状态分类,有气体、液体、液化气体、单和混合物等;按化学特性分类,则有可燃、易燃、惰性和助燃四种;按它们对人类害程度,又可分为极度危害(I)、高度危害(Ⅱ)、中度危害(Ⅲ)、轻度危害(Ⅳ)四级。   易燃介:是指与空气混合的炸下限小于10%,或炸上限和下限之差值大于等于20%的气体,如一甲、乙烷、乙烯等。   性介:《压力容器安全技术监察规程》(以下简称《容规》)对介性程度的划分参照GB 5044《职性接触物危害程度分级》分为四级。其高容许浓度分别为:极度危害(I级)混合物时,应以介的组成并按性程度或易燃介的划分原则,由设计单位的工艺设计部门或使用单位的生产技术部门决定介性程度或是否属于易燃介。   腐蚀性介,石油化工介对压力容器用材具有耐腐蚀性要求。有时是因介中有杂,使腐蚀性加剧。腐蚀介的种类和性各不相同,加上工艺条件不同,介的腐蚀性也不相同。这要求压力容器在选用材料时,除了应满足使用条件下的力学性能要求外,还要具备足够低腐蚀性,必要时还要采取一定的防腐措施。

编辑本段压力容器事故率高的原因

  设备事故率的大小,影响因素较多,也十分复杂。它不但与整个工领域的各项技术水平有关,而且

  压力容器

 

还与社会文化和人的素有关。   在相同的条件下,压力容器的事故率要比其他机械设备高得多。本来压力容器大多数是承受静止而比较稳定的载荷,并不像一般转动机械那样容易因过度磨损而失效,也不像高速发动机那样因承受高周期反复载荷而容易发生疲劳失效。究其原因,主要有以下几方面。

技术条件

  1)使用条件比较苛刻。压力容器不但承受着大小不同的压力载荷(在一般情况下还是脉动载荷)和其他载荷,而且有的还是在高温或深冷的条件下运行,工作介又往往具有腐蚀性,工况环境比较恶劣。   2)容易超负荷。容器内的压力常常会因操作失误或发生异常反应而迅速升高,而且往往在尚未发现的情况下,容器即已破裂。   3)局部应力比较复杂。例如,在容器开周围及其他结构不连续处,常会因过高的局部应力和反复的加载卸载而造成疲劳破裂。   4)常隐藏有严重缺陷。焊接或锻制的容器,常会在制造时留下微小裂纹等严重缺陷,这些缺陷若在运行中不断扩大,或在适当的条件(如使用温度、工作介性等)下都会使容器突然破裂。

使用管理

  1)使用不合法。购买一些没有压力容器制造资的工厂生产的设备作为承压设备,并非法当压力容器使用,以避开报装、使用注册登记和检验等安全监察管理,留下无穷后患。   2)容器虽合法而管理操作不要求。企不配备或缺乏懂得压力容器知识和了解国家对压力容器的有关法规、标准的技术管理人员。压力容器操作人员未经必要的和考核,无上岗,极易造成操作事故。   3)压力容器管理处于“四无”状态。即一无安全操作规程,二无建立压力容器技术档案,三无压力容器持上岗人员和相关管理人员,四无定期检验管理。使压力容器和安全附件处于盲目使用、盲目管理的失控状态。   4)擅自改变使用条件,擅自修理改造。经营者无视压力容器安全,为了适应某种工艺的需要而随意改

  压力容器

 

变压力容器的用途和使用条件,甚至带“病”操作,违规超负荷超压生产等造成严重后果。   5)地方政府的安全监察管理部门和相关行政部门管理不到位。安全监察管理部门和相关行政部门的工作未能使用社会主义市场经济的发展,特别是规模小、分布广的民营和营企的激增,使压力容器的安全监察管理存在盲区和管理不到位的现象,助长了压力容器的违规使用和违规管理。

编辑本段压力容器应用举例-反应釜

  反应釜广泛应用于石油、化工、橡胶、农、染料、医、食品,用来完成化、化、氢化、烃化、聚合、缩合等工艺过程的压力容器,例如反应器、反应锅、分解锅、聚合釜等;材一般有碳锰钢、不锈钢、锆、镍(哈氏、蒙乃尔、因康镍)合金及其它复合材料。   反应釜分类   根据反应釜的制造结构可分为开式平盖式反应釜、开式对焊法兰式反应釜和闭式反应釜 三大类,每一种结构都有他的适用范围和缺点。反应釜按材及用途可有以下几种:

不锈钢反应釜

  不锈钢反应釜由釜体、釜盖、夹套、搅拌器、传动装置、轴封装置、支承等组成。材一般有碳锰钢、不锈钢、锆、镍(哈氏、蒙乃尔)合金及其它复合材料;根据反应釜的制造结构可分为开式平盖式反应釜、开式对焊法兰式反应釜和闭式反应釜 三大类.   不锈钢反应釜搅拌形式一般有锚式、桨式、涡轮式、推进式或框式等,搅拌装置在高径比较大时,可用多层搅拌桨叶,也可根据用户的要求任意选配.   不锈钢反应釜的密封型式不同可分为:填料密封机械密封和磁力密封。加热方式有电加热、热水加热、导热油循环加热、外(内)盘管加热等,冷却方式为夹套冷却和釜内盘管冷却.

搪玻璃反应釜

  搪玻璃反应釜是将含高二氧化硅的玻璃,衬在钢制容器第表面,经高温灼而牢固地密着于金属表面上成为复合材料制品。因此搪玻璃反应釜具有玻璃的稳定性和金属强度的双重点,是一种良低腐蚀设备。

磁力搅拌反应釜

  采用静密封结构,搅拌器与电机传动间采用磁力偶合器联接,由于其无接触的传递力矩,以静密封取代动密封,能彻底解决以前机械密封与填料密封无法解决的泄漏问题,使整个介各搅拌部件完全处于密封的状态中进行工作,因此,更适合用于各种易燃易、剧、贵重介及其它渗透力极强的化学介进行反应,是石油、化工、有机合成、高分子材料聚合、食品等工艺中进行化、氟化、氢化、氧化等反应理想的无泄漏反应设备。

编辑本段压力容器制造变形的成因及预防

一、应力变形及预防  1、火焰切割变形   (1)筒节:大直径壳体短筒节下料(料较长且较窄)时,其端口的火焰切割加工边易发生变形。因切割高温冷却后,加工边产生收缩,直线边变为“弧线”边,筒节辊圆后,其端口不在一个水平面上,误差较大时,满足不了组对和焊接的要求。应采取对称切割或机械加工等方法避免产生变形。   (2)封头:成型封头火焰净料切割后,其端口周边会产生收缩,使封头口径变小。严重时,收缩后的封头口径满足不了尺寸要求。对整体成型的封头端口加工,如采取火焰切割,则其成型模具设计时要考虑切割后的收缩;对瓣片式组合封头的端口加工,如采取火焰切割,则封头组装时口径要适当放大,以弥补切割后的收缩。也可采取机械加工的方法避免产生变形。   (3)机加工件坯料(主要是钢板坯料):这种坯料多用于压力容器上的大型法兰或密封圈等。火焰切割后,由于钢板胀缩不均,致使坯料板面不平,严重时造成坯料面的加工不够。应在坯料板切割后进行平整矫形,对难以矫形的坯料板,可适当增大其加工余。   2、加工失稳变形   加工失稳变形往往是在已成型的封头或筒节上开大型(如容器的装卸)、由于开区及其附近稳定性减弱,造成壳体局部或部件的变形。尽避免在单独筒节或单独封头上直接开大,可视情况将壳体组装成大段或整体后再开大;开大前将开区用紧贴壳体的筋板进行加强,组焊接管后壳体处于整体稳定状态时,再把加强板撤掉。   3、焊接变形   焊接工艺是容器焊接的技术要求和操作规定,包括:采用的焊接方法、焊接坡口、焊条种类及直径,焊接工艺参数、焊接顺序、焊道层数、焊前和焊后的处理、焊接环境要求以及防变形、反变形措施等。焊接工艺必须经过工艺评定达到合格,而且在焊接操作过程中必须严格执行工艺要求。   根据压力容器和大型部件的焊接条件和焊接,预先分析焊接将要产生的变形大小和形态,有对性地制定的控制措施:   (1)对多焊道的大型压力容器,例如球形容器,应先组装联结成整体后再进行焊接,焊接应对称进行,并要遵守规定的焊接顺序。   (2)对多焊道的大型部件,如瓜瓣式组合封头和由瓣片组合的壳体过渡段,除执行上述要求外,还应在施焊场地设口形固定卡具。   (3)较长且分多节组焊的压力容器,其筒节下料时尺寸要适当放出焊接收缩,以避免出现焊后壳体缩短现象。   (4)对压力容器,特别对结构复杂的压力容器的组焊,要采取合理的组装顺序和焊接防变形措施,确保其制造中不变形。   (5)反变形措施:根据实践经验或推算,预先在焊接件上向焊接变形相反的方向给以变形,焊接后这个预变形刚好得到抵消,具体做法是:压力容器筒节的纵缝对接处两端头压弧时,在发生焊接变形方向的相反向留出反变形;组合式瓣形封头和过渡段模具尺寸考虑抵消焊接变形的反变形。   4、热处理变形的预防措施   (1)热处理炉必须规范要求,炉内温度均匀准确,炉壁火焰喷嘴处应设挡火墙,严禁火焰直接接触或接近热处理件。   (2)长度较大的压力容器进炉后,要加临时支座支垫,所用数视容器具体尺度而定。   (3)直径较大、厚度较薄的壳体,一般应进行内部加强。   (4)分段预制的压力容器,分段端口处应设加强支撑。   (5)对受高温易失去稳定的压力容器部件,也应根据具体情况进行加固加强。   二、加工误差变形  1、下料误差变形   由于下料尺寸不准,使成型后的部件形状超出了标准规定。下料尺寸不准主要是由于计算或放大样有误,除了提高下料人员的技术水平,还应施行下料尺寸校对制,并尽可能采取下料尺寸计算机软件管理。   2、成型误差变形   压力容器部件在加工成型中,由于操作不当或模具不标准而产生变形:热成型封头脱模温度有一定要求,如温度尚高过早脱模会导致封头收缩较大,严重时可使其几何尺寸超标;机械辊制或压制的容器部件,因操作不当使之产生变形;模具设计考虑不周或有误,使成型后压力容器部件的几何尺寸不要求。主要预防措施有:   (1)成型操作严格按工艺技术要求进行。   (2)用检查样板严格控制加工件的形状。   (3)模具设计在依照加工件的理论尺寸形状的础上,充分考虑压力容器部件加工成型中和成型后发生的变化,冷成型模具要考虑成型件的回弹,热成型模具要考虑成型件冷却后的收缩。   3、组装误差变形   压力容器壳体组装时由于错口或不直度误差等超标所产生的变形,称组装变形。其预防措施:   (1)壳体组装应使用卡具,直径较大、厚度较薄的壳体,组装时筒节还要加支撑,严格限制壳体对接边的错口。   (2)壳体卧式组装应在托辊上进行,并用直线检查其不直度。   (3)分段预制的压力容器,安装时要设卡具,并用经纬仪检查其不直度。 

定义

  为了与一般容器(常压容器)相区别,只有同时满足下列三个条件的容器,才称之为压力容器:

  (1)工作压力(注1)大于或者等于0.1Mpa(工作压力是指压力容器在正常工作情况下,其顶部可能达到的高压力(表压力)); (不含液体静压力)

  (2)内直径(非圆形截面指其大尺寸)大于等于0.15m。且容积(V)大于等于0.025立方米,工作压力与容积的乘积大于或者等于2.5MPa-L(容积,是指压力容器的几何容积);

  (3)盛装介为气体、液化气体以及介高工作温度高于或者等于其标准沸点的液体.

使用简介

 

  

压力容器

压力容器的用途十分广泛。它是在石油化学工、能源工、科研和工等国民经济的各个部门都起着重要作用的设备。压力容器一般由筒体、封头法兰、密封元件、开和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完成不同生产工艺作用第件。压力容器由于密封、承压及介等原因,容易发生、燃起火而危及人员、设备和财产的安全及污染环境的事故。目前,各国均将其列为重要的监检产品,由国家指定的门机构,按照国家规定的法规和标准实施监督检查和技术检验

编辑本段分类概述

  压力容器的分类方法很多,从使用、制造和监检的角度分类,有以下几种。

  

压力容器

(1)按承受压力的等级分为:低压容器、中压容器、高压容器和超高压容器。

  (2)按盛装介分为:非易燃、无;易燃或有;剧。

  (3)按工艺过程中的作用不同分为:

  ①反应容器:用于完成介的物理、化学反应的容器。

  ②换热容器:用于完成介的热交换的容器。

  ③分离容器:用于完成介的交换、气体净化、固、液、气分离的容器。

  ④贮运容器:用于盛装液体或气体物料、贮运介或对压力起平衡缓冲作用的容器。

编辑本段我国分类

  为了更有效地实施科学管理和安全监检,我国《压力容器安全监察规程》中根据工作压力、介危害性及其在生产中的作用将压力容器分为三类。并对每个类别的压力容器在设计、制造过程,以及检验项目、内容和方式做出了不同的规定。压力容器已实施进口商品安全许可制度,未取得进口安全许可书的商品不准进口。

第三类压力容器

  具有下列情况的,为第三类压力容器

  高压容器;

  

压力容器

中压容器(性程度为极度和高度危害介);

  中压储存容器(易燃或性程度为中度危害介,且pV乘积大于等于10MPa·m3 );

  中压反应容器(易燃或性程度为中度危害介,且pV乘积大于等于0.5MPa·m3);

  低压容器(性程度为极度和高度危害介,且乘积大于等于0.2MPa·m3 );

  高压、中压管壳式余热锅炉

  中压搪玻璃压力容器;

  使用强度级别较高(指相应标准中抗拉强度规定值下限大于等于540MPa)的材料制造的压力容器;

  移动式压力容器,包括铁路罐车(介为液化气体、低温液体)、罐式汽车[液化气体运输(半挂)车、低温液体运输(半挂)车、气体运输(半挂)车]和罐式集装箱(介为液化气体、低温液体)等;

  球形储罐(容积大于等于50m3);低温液体储存容器(容积大于5m3)。

  低温液体储存容器(容积大于5m3)

第二类压力容器

  具有下列情况的,为第二类压力容器

  中压容器;

  低压容器(性程度为极度和高度危害介);

  低压反应容器和低压储存容器(易燃介或性程度为中度危害介);

  低压管壳式余热锅炉;

  低压搪玻璃压力容器。

类压力容器

  除上述规定以外的低压容器为类压力容器。

编辑本段分类具体规定

介分组

  压力容器的介分为以下两组,包括气体、液化气体或者高工作温度高于或者等于标准沸点的液体。

  (1)组介:性程度为极度危害、高度危害的化学介,易介,液化气体

  (2)第二组介:除组以外的介。

介危害性

  介危害性指压力容器在生产过程中因事故致使介与人体大接触,发生炸或者因经常泄漏引起职性慢性危害的严重程度,用介性程度和炸危害程度表示。

  A1.2.1 性程度: 综合考虑急性性、高容许浓度和职性慢性危害等因素。极度危害高容许浓度小于0.1mg/m3;高度危害高容许浓度0.1~1.0 mg/m3;中度危害高容许浓度1.0~10.0 mg/m3; 轻度危害高容许浓度大于或者等于10.0 mg/m3。

  A1.2.2 易介: 指气体或者液体的蒸汽、薄雾与空气混合形成的炸混合物,并且其炸下限小于10%,或者炸上限和炸下限的差值大于或者等于20%的介。

  A1.2.3 具体介性危害程度和炸危险程度按GB 5044—1985 《职性接触物危害程度分级》、HG 20660—2000 《压力容器中化学介性危害和炸危险程度分类》两个标准确定。两者不一致时,以危害(危险)程度高的为准。

编辑本段分类方法

本分类

 

  

介+第二介

压力容器分类应当先按照介特性,按照以下要求选择分类图,再根据设计压力p(单位MPa)和容积V(单位L),标出坐标点,确定容器类别:

  (1)对于组介,压力容器的分类见图A-1。

  (2)对于第二组介,压力容器的分类见图A-2。

  图A-1 压力容器分类图—组介

  图A-2 压力容器分类图—第二组介

多腔压力容器分类

  多腔压力容器(如换热器的管程和壳程、夹套容器等)按照类别高的压力腔作为该容器的类别并且按该类别进行使用管理。但应当按照每个压力腔各自的类别分别提出设计、制造技术要求。对各压力腔进行类别划定时,设计压力取本压力腔的设计压力,容积取本压力腔的几何容积。

  1. 同腔多种介容器分类

  一个压力腔内有多种介时,按组别高的介分类。

  2. 介含极小容器分类

  当某一危害性物在介中含极小时,应当按其危害程度及其含综合考虑,由压力容器设计单位决定介组别。

特殊情况分类    (1)坐标点位于图A-1或者图A-2的分类线上时,按较高的类别划分其类别。

  (2)对于GB 5044和HG 20660两个标准中没有明确规定的介,应当按化学性、危害程度及其含综合考虑,由压力容器设计单位决定介组别。(3)本规程1.4条范围内的压力容器统一划分为第Ⅰ类压力容器。

压力等级划分

  压力容器的设计压力(p)划分为低压、中压、高压和超高压四个压力等级:

  (1)低压(代号L) 0.1MPa≤p<1.6MPa;

  (2)中压(代号M) 1.6MPa≤p<10.0MPa;

  (3)高压(代号H) 10.0MPa≤p<100.0MPa;

  (4)超高压(代号U) p≥100.0MPa。

  

压力容器

压力容器品种划分

  压力容器按在生产工艺过程中的作用原理,分为反应压力容器、换热压力容器、分离压力容器、储存压力容器。具体划分如下:

  (1)反应压力容器(代号R):主要是用于完成介的物理、化学反应的压力容器,如反应器反应釜、分解锅、化罐、分解塔、聚合釜高压釜、超高压釜、合成塔、变换炉、蒸煮锅、蒸球蒸压釜煤气发生炉等。

  (2)换热压力容器(代号E):主要是用于完成介的热交换的压力容器,如管壳式余热锅炉、热交换器冷却器冷凝器蒸发器加热器、消锅、染器、烘缸、蒸炒锅、预热锅、溶剂预热器、蒸锅、蒸脱机、电热蒸汽发生器、煤气发生炉水夹套等。

  (3)分离压力容器(代号S):主要是用于完成介的流体压力平衡缓冲和气体净化分离的压力容器,如分离器过滤器集油器、缓冲器、洗涤器吸收塔、铜洗塔、干燥塔、汽提塔、分汽缸除氧器等。

  (4)储存压力容器(代号C,其中球罐代号B):主要是用于储存、盛装气体、液体、液化气体等介的压力容器,如各种型式的储罐。

  在一种压力容器中,如同时具备两个以上的工艺作用原理时,应当按工艺过程中的主要作用来划分品种。

相关规定标准

与其他技术标准,与其他管理规定的关系:

  本规程是固定式压力容器的本安全性能保,也是必须满足和达到的安全要求,其他标准不得低于本规程的各项规定;

不本规定时,处理

  指“三新”试验、研究数据报告报国家检总局委托技术机构评审、处理,并将结果经总局批准后进行试制;

引用现行有效标准:十项

  覆盖了各类形式、材的压力容器设计、制造,具有适用性。

  

压力容器

(1)GB 150 -1998 钢制压力容器

  (2)JB 4732 –1995 钢制压力容器—分析设计标准

  (3)GB 151 -1999管壳式换热器

  (4)GB 12337- 1998 钢制球形储罐

  (5)JB/T 4710 -2005 钢制塔式容器

  (6)JB/T 4731 -2005 钢制卧式容器

  (7)JB/T 4734 -2002 铝制焊接容器

  (8)JB/T 4745 - 2002 钛制焊接容器

  (9)JB/T 4755 -2006 铜制压力容器

  (10)JB/T 4756 -2006 镍及镍合金制压力容器

编辑本段其他介绍

  内部或外部承受气体或液体压力,并对安全性有较高要求的密封容器。早期主要用于化学工,压力

  

压力容器

多在10兆帕以下。合成氨和高压聚乙烯等高压生产工艺出现后,要求压力容器的压力达100兆帕以上 。随着化工和石油化工等工的发展,压力容器的工作温度范围越来越宽,容不断增大,有些还要求耐介腐蚀。20世纪60年始,核电的发展对反应堆压力容器提出了更高的安全和技术要求,从而促进了压力容器的进一步发展,广泛应用于各工部门。压力容器主要为圆柱形,也有球形或其他形状。根据结构形式,可分为多层式压力容器,绕板式压力容器、型槽绕带式压力容器、热套式压力容器、锻焊式压力容器和厚板卷焊式压力容器等。大多数压力容器由钢制成,也有的用铝、钛等有金属和玻璃钢、预应力混凝土等非金属材料制成。压力容器在使用中如发生炸,会造成灾难性事故。为了使压力容器在确保安全的前提下达到设计、结构合理、易于制造、使用可靠和造价经济等目的,各国都根据本国具体情况制定了有关压力容器的标准、规范和技术条件,对压力容器的设计、制造、检验和使用等提出具体和必须遵守的规定。

编辑本段压力容器的检验

压力容器外部检查

  亦称运行中检查,检查的主要内容有:压力容器外表面有无裂纹、变形、泄漏、局部过热等不正常现象;安全附件是否、灵敏、可靠;紧固螺栓是否完好、全部旋紧;础有无下沉、倾斜以及防腐层有无损坏等异常现象。 外部检查既是检验人员的工作,也是操作人员日常巡回检查项目。发现危及安全现象(如受压元件产生裂纹、变形、严重泄渗等)应予停车并及时报告有关人员。

压力容器内外部检验

  压力容器内外部检验这种检验必须在停车和容器内部清洗干净后才能进行。检验的主要内容除包括外部检查的全部内容外,还要检验内外表面的腐蚀磨损现象;用肉眼和放大镜对所有焊缝、封头过渡区及其他应力集中部位检查有无裂纹,必要时采用超声波或射线探伤检查焊缝内部;测壁厚。若测得壁厚小于容器小壁厚时,应重新进行强度校核,提出降压使用或修理措施;对可能引起金属材料的金相组织变化的容器,必要时应进行金相检验;高压、超高压容器的主要螺栓应利用磁粉或着进

  

压力容器

行有无裂纹的检查等。通过内外部检验,对检验出的缺陷要分析原因并提出处理意见。修理后要进行复验。 压力容器内外部检验周期为每三年,但对强烈腐蚀性介、剧介的容器检验周期应予缩短。运行中发现有严重缺陷的容器和焊接差、材对介抗腐蚀能力不明的容器也均应缩短检验周期。

压力容器全面检验

  压力容器全面检验除了上述检验项目外,还要进行耐压试验(一般进行水压试验)。对主要焊缝进行无损探伤抽查或全部焊缝检查。但对压力很低、非易燃或无、无腐蚀性介的容器,若没有发现缺陷,取得一定使用经验后,可不作无损探伤检查。 容器的全面检验周期,一般为每六年至少进行。对盛装空气和惰性气体的制造合格容器,在取得使用经验和一两次内外检验确认无腐蚀后,全面检验周期可适当延长。

编辑本段压力容器的操作条件

压力

  压力容器的压力可以来自两个方面,一是压力是容器外产生(增大)的,二是压力是容器内产生(增大)的。

  高工作压力,多指在正常操作情况下,容器顶部可能出现的高压力。

  设计压力,系是指在相应设计温度下用以确定容器壳体厚度的压力,亦即标注在铭牌上的容器设计压力,压力容器的设计压力值不得低于高工作压力;当容器各部位或受压元件所承受的液柱静压力达到5%设计压力时,则应取设计压力和液柱静压力之和进行该部位或元件的设计计算;装有安全阀的压力容器,其设计压力不得低于安全阀的开启压力或破压力。容器的设计压力确定应按GB 150的相应规定。

温度

 

  

压力容器

金属温度,系指容器受压元件沿截面厚度的平均温度。任何情况下,元件金属的表面温度不得超过钢材的允许使用温度。

  设计温度,系指容器在正常操作情况下,在相应设计压力下,壳壁或元件金属可能达到的高或低温度。当壳壁或元件金属的温度低于—20℃,按低温度确定设计温度;除此之外,设计温度按高温度选取。设计温度值不得低于元件金属可能达到的高金属温度;对于0℃以下的金属温度,则设计温度不得高于元件金属可能达到的低金属温度。容器设计温度(即标注在容器铭牌上的设计介温度)是指壳体的设计温度。

  生产过程所涉及的介品种繁多,分类方法也有多种。按物状态分类,有气体、液体、液化气体、单和混合物等;按化学特性分类,则有可燃、易燃、惰性和助燃四种;按它们对人类害程度,又可分为极度危害(I)、高度危害(Ⅱ)、中度危害(Ⅲ)、轻度危害(Ⅳ)四级。

易燃介:是指与空气混合的炸下限小于10%,或炸上限和下限之差值大于等于20%的气体,如一甲、乙烷、乙烯等。

性介:《压力容器安全技术监察规程》(以下简称《容规》)对介性程度的划分参照GB 5044《职性接触物危害程度分级》分为四级。其高容许浓度分别为:极度危害(I级)

  压力容器中的介为混合物时,应以介的组成并按性程度或易燃介的划分原则,由设计单位的工艺设计部门或使用单位的生产技术部门决定介性程度或是否属于易燃介。

腐蚀性介,石油化工介对压力容器用材具有耐腐蚀性要求。有时是因介中有杂,使腐蚀性加剧。腐蚀介的种类和性各不相同,加上工艺条件不同,介的腐蚀性也不相同。这要求压力容器在选用材料时,除了应满足使用条件下的力学性能要求外,还要具备足够低腐蚀性,必要时还要采取一定的防腐措施。

编辑本段压力容器事故率高的原因

设备事故率的大小,影响因素较多,也十分复杂。它不但与整个工领域的各项技术水平有关,而且

  

压力容器

还与社会文化和人的素有关。

  在相同的条件下,压力容器的事故率要比其他机械设备高得多。本来压力容器大多数是承受静止而比较稳定的载荷,并不像一般转动机械那样容易因过度磨损而失效,也不像高速发动机那样因承受高周期反复载荷而容易发生疲劳失效。究其原因,主要有以下几方面。

技术条件

  1)使用条件比较苛刻。压力容器不但承受着大小不同的压力载荷(在一般情况下还是脉动载荷)和其他载荷,而且有的还是在高温或深冷的条件下运行,工作介又往往具有腐蚀性,工况环境比较恶劣。

  2)容易超负荷。容器内的压力常常会因操作失误或发生异常反应而迅速升高,而且往往在尚未发现的情况下,容器即已破裂。

  3)局部应力比较复杂。例如,在容器开周围及其他结构不连续处,常会因过高的局部应力和反复的加载卸载而造成疲劳破裂。

  4)常隐藏有严重缺陷。焊接或锻制的容器,常会在制造时留下微小裂纹等严重缺陷,这些缺陷若在运行中不断扩大,或在适当的条件(如使用温度、工作介性等)下都会使容器突然破裂。

使用管理

  1)使用不合法。购买一些没有压力容器制造资的工厂生产的设备作为承压设备,并非法当压力容器使用,以避开报装、使用注册登记和检验等安全监察管理,留下无穷后患。

  2)容器虽合法而管理操作不要求。企不配备或缺乏懂得压力容器知识和了解国家对压力容器的有关法规、标准的技术管理人员。压力容器操作人员未经必要的和考核,无上岗,极易造成操作事故。

  3)压力容器管理处于“四无”状态。即一无安全操作规程,二无建立压力容器技术档案,三无压力容器持上岗人员和相关管理人员,四无定期检验管理。使压力容器和安全附件处于盲目使用、盲目管理的失控状态。

  4)擅自改变使用条件,擅自修理改造。经营者无视压力容器安全,为了适应某种工艺的需要而随意改

  

压力容器

变压力容器的用途和使用条件,甚至带“病”操作,违规超负荷超压生产等造成严重后果。

  5)地方政府的安全监察管理部门和相关行政部门管理不到位。安全监察管理部门和相关行政部门的工作未能使用社会主义市场经济的发展,特别是规模小、分布广的民营和营企的激增,使压力容器的安全监察管理存在盲区和管理不到位的现象,助长了压力容器的违规使用和违规管理。

编辑本段压力容器应用举例-反应釜

  反应釜广泛应用于石油、化工、橡胶、农、染料、医、食品,用来完成化、化、氢化、烃化、聚合、缩合等工艺过程的压力容器,例如反应器、反应锅、分解锅、聚合釜等;材一般有碳锰钢、不锈钢、锆、镍(哈氏、蒙乃尔、因康镍)合金及其它复合材料。

  反应釜分类

  根据反应釜的制造结构可分为开式平盖式反应釜、开式对焊法兰式反应釜和闭式反应釜 三大类,每一种结构都有他的适用范围和缺点。反应釜按材及用途可有以下几种:

不锈钢反应釜

  不锈钢反应釜由釜体、釜盖、夹套、搅拌器、传动装置、轴封装置、支承等组成。材一般有碳锰钢、不锈钢、锆、镍(哈氏、蒙乃尔)合金及其它复合材料;根据反应釜的制造结构可分为开式平盖式反应釜、开式对焊法兰式反应釜和闭式反应釜 三大类.

  不锈钢反应釜搅拌形式一般有锚式、桨式、涡轮式、推进式或框式等,搅拌装置在高径比较大时,可用多层搅拌桨叶,也可根据用户的要求任意选配.

  不锈钢反应釜的密封型式不同可分为:填料密封机械密封和磁力密封。加热方式有电加热、热水加热、导热油循环加热、外(内)盘管加热等,冷却方式为夹套冷却和釜内盘管冷却.

搪玻璃反应釜

  搪玻璃反应釜是将含高二氧化硅的玻璃,衬在钢制容器第表面,经高温灼而牢固地密着于金属表面上成为复合材料制品。因此搪玻璃反应釜具有玻璃的稳定性和金属强度的双重点,是一种良低腐蚀设备。

磁力搅拌反应釜

  采用静密封结构,搅拌器与电机传动间采用磁力偶合器联接,由于其无接触的传递力矩,以静密封取代动密封,能彻底解决以前机械密封与填料密封无法解决的泄漏问题,使整个介各搅拌部件完全处于密封的状态中进行工作,因此,更适合用于各种易燃易、剧、贵重介及其它渗透力极强的化学介进行反应,是石油、化工、有机合成、高分子材料聚合、食品等工艺中进行化、氟化、氢化、氧化等反应理想的无泄漏反应设备。

编辑本段压力容器制造变形的成因及预防

一、应力变形及预防

  1、火焰切割变形

  (1)筒节:大直径壳体短筒节下料(料较长且较窄)时,其端口的火焰切割加工边易发生变形。因切割高温冷却后,加工边产生收缩,直线边变为“弧线”边,筒节辊圆后,其端口不在一个水平面上,误差较大时,满足不了组对和焊接的要求。应采取对称切割或机械加工等方法避免产生变形。

  (2)封头:成型封头火焰净料切割后,其端口周边会产生收缩,使封头口径变小。严重时,收缩后的封头口径满足不了尺寸要求。对整体成型的封头端口加工,如采取火焰切割,则其成型模具设计时要考虑切割后的收缩;对瓣片式组合封头的端口加工,如采取火焰切割,则封头组装时口径要适当放大,以弥补切割后的收缩。也可采取机械加工的方法避免产生变形。

  (3)机加工件坯料(主要是钢板坯料):这种坯料多用于压力容器上的大型法兰或密封圈等。火焰切割后,由于钢板胀缩不均,致使坯料板面不平,严重时造成坯料面的加工不够。应在坯料板切割后进行平整矫形,对难以矫形的坯料板,可适当增大其加工余。

  2、加工失稳变形

  加工失稳变形往往是在已成型的封头或筒节上开大型(如容器的装卸)、由于开区及其附近稳定性减弱,造成壳体局部或部件的变形。尽避免在单独筒节或单独封头上直接开大,可视情况将壳体组装成大段或整体后再开大;开大前将开区用紧贴壳体的筋板进行加强,组焊接管后壳体处于整体稳定状态时,再把加强板撤掉。

  3、焊接变形

  焊接工艺是容器焊接的技术要求和操作规定,包括:采用的焊接方法、焊接坡口、焊条种类及直径,焊接工艺参数、焊接顺序、焊道层数、焊前和焊后的处理、焊接环境要求以及防变形、反变形措施等。焊接工艺必须经过工艺评定达到合格,而且在焊接操作过程中必须严格执行工艺要求。

  根据压力容器和大型部件的焊接条件和焊接,预先分析焊接将要产生的变形大小和形态,有对性地制定的控制措施

  (1)对多焊道的大型压力容器,例如球形容器,应先组装联结成整体后再进行焊接,焊接应对称进行,并要遵守规定的焊接顺序。

  (2)对多焊道的大型部件,如瓜瓣式组合封头和由瓣片组合的壳体过渡段,除执行上述要求外,还应在施焊场地设口形固定卡具。

  (3)较长且分多节组焊的压力容器,其筒节下料时尺寸要适当放出焊接收缩,以避免出现焊后壳体缩短现象。

  (4)对压力容器,特别对结构复杂的压力容器的组焊,要采取合理的组装顺序和焊接防变形措施,确保其制造中不变形。

  (5)反变形措施:根据实践经验或推算,预先在焊接件上向焊接变形相反的方向给以变形,焊接后这个预变形刚好得到抵消,具体做法是:压力容器筒节的纵缝对接处两端头压弧时,在发生焊接变形方向的相反向留出反变形;组合式瓣形封头和过渡段模具尺寸考虑抵消焊接变形的反变形。

  4、热处理变形的预防措施

  (1)热处理炉必须规范要求,炉内温度均匀准确,炉壁火焰喷嘴处应设挡火墙,严禁火焰直接接触或接近热处理件。

  (2)长度较大的压力容器进炉后,要加临时支座支垫,所用数视容器具体尺度而定。

  (3)直径较大、厚度较薄的壳体,一般应进行内部加强。

  (4)分段预制的压力容器,分段端口处应设加强支撑。

  (5)对受高温易失去稳定的压力容器部件,也应根据具体情况进行加固加强。

二、加工误差变形

  1、下料误差变形

  由于下料尺寸不准,使成型后的部件形状超出了标准规定。下料尺寸不准主要是由于计算或放大样有误,除了提高下料人员的技术水平,还应施行下料尺寸校对制,并尽可能采取下料尺寸计算机软件管理。

  2、成型误差变形

  压力容器部件在加工成型中,由于操作不当或模具不标准而产生变形:热成型封头脱模温度有一定要求,如温度尚高过早脱模会导致封头收缩较大,严重时可使其几何尺寸超标;机械辊制或压制的容器部件,因操作不当使之产生变形;模具设计考虑不周或有误,使成型后压力容器部件的几何尺寸不要求。主要预防措施有:

  (1)成型操作严格按工艺技术要求进行。

  (2)用检查样板严格控制加工件的形状。

  (3)模具设计在依照加工件的理论尺寸形状的础上,充分考虑压力容器部件加工成型中和成型后发生的变化,冷成型模具要考虑成型件的回弹,热成型模具要考虑成型件冷却后的收缩。

  3、组装误差变形

  压力容器壳体组装时由于错口或不直度误差等超标所产生的变形,称组装变形。其预防措施:

  (1)壳体组装应使用卡具,直径较大、厚度较薄的壳体,组装时筒节还要加支撑,严格限制壳体对接边的错口。

  (2)壳体卧式组装应在托辊上进行,并用直线检查其不直度。

  (3)分段预制的压力容器,安装时要设卡具,并用经纬仪检查其不直度。

该会员还发布了以下产品:(查看更多)

相关搜索